Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D29

Direct product G=N×Q with N=C2 and Q=C22×D29
dρLabelID
C23×D29232C2^3xD29464,50


Non-split extensions G=N.Q with N=C2 and Q=C22×D29
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D29) = C2×C4×D29central extension (φ=1)232C2.1(C2^2xD29)464,36
C2.2(C22×D29) = C22×Dic29central extension (φ=1)464C2.2(C2^2xD29)464,43
C2.3(C22×D29) = C2×Dic58central stem extension (φ=1)464C2.3(C2^2xD29)464,35
C2.4(C22×D29) = C2×D116central stem extension (φ=1)232C2.4(C2^2xD29)464,37
C2.5(C22×D29) = D1165C2central stem extension (φ=1)2322C2.5(C2^2xD29)464,38
C2.6(C22×D29) = D4×D29central stem extension (φ=1)1164+C2.6(C2^2xD29)464,39
C2.7(C22×D29) = D42D29central stem extension (φ=1)2324-C2.7(C2^2xD29)464,40
C2.8(C22×D29) = Q8×D29central stem extension (φ=1)2324-C2.8(C2^2xD29)464,41
C2.9(C22×D29) = Q82D29central stem extension (φ=1)2324+C2.9(C2^2xD29)464,42
C2.10(C22×D29) = C2×C29⋊D4central stem extension (φ=1)232C2.10(C2^2xD29)464,44

׿
×
𝔽